

Fig. l.l.--Two shock wave stress-distance profiles in iron for times t_{2} and t_{3} where $t_{2}<t_{3}$.

The plastic I wave stress exceeds its eventual timeindependent value near the impact boundary, and time required for the stress to decay to its time-independent value is related to kinetics of the transformation. Minshall and his co-workers, ${ }^{2,22}$ measured a slow decay in the plastic I wave stress as a function of thickness for a decaying driving stress. The plastic I stress was about 140 kbar in a sample $6-\mathrm{mm}$ thick; it decayed to 130 kbar in a sample $40-\mathrm{mm}$ thick. In the present experimental work I measured a similar slow decay in plastic I stress as a function of thickness for constant final driving stress. The plastic I stress was about 139 kbar for a l-mm-thick sample and decayed to 131 kbar in a $25-m m-t h i c k$ sample. Final driving stress was near 200 kbar. Barker and Hollenbach ${ }^{15}$ measured a small increase in the plastic I stress with increase of final driving stress for constant sample thickness; amplitude of stress behind the plastic I shock increased by 6 kbar when final driving stress changed from 130 kbar to 300 kbar for $6.35-\mathrm{mm}$-thick samples. ${ }^{15}$

The transformation process occurs principally in the plastic II shock front; therefore, the rate of transformation may contribute significantly to rise time of this wave. I and a number of experimenters ${ }^{15,23}$ have measured rise times of 0.2 to $0.3 \mu \mathrm{sec}$ for the plastic II shock front in iron by monitoring surface motion of shocked samples. A less accurate method of obtaining rise time information is from residual metallurgical effects, ${ }^{24,25}$ which imply shock front thickness; for an approximately steady wave, rise time is obtained by dividing shock front

